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Abstract

As cameras become ubiquitously available, the need for analyzing video sequences on-
the-fly arises. An important class of applications requires algorithms that are able to
continuously track an a-priori unknown object of interest as it makes its way through
the scene. This problem is difficult, as no training data can be used beforehand to create
an object model. In this thesis, this problem is referred to as one-shot object tracking.
Extensive literature about the topic of one-shot object tracking is available, still the
performance of state-of-the-art one-shot tracking algorithms on realistic sequences leaves
much to be desired. In this thesis the viewpoint is taken that the deformation of objects
of interest acts as a major obstacle for achieving satisfactory results.

While approaches have been proposed in the literature for dealing with this challenge,
they either are too simple to be of use for complex objects or require a considerable amount
of training data to work. However, in one-shot object tracking there is by definition only
one training example available. More training examples can be collected from the video
sequence in an online manner, however this process is error-prone and can lead to the
undesired effect of accumulating errors so that the object model is no longer a good
representation of the object of interest.

In this thesis, a deformable part model for one-shot object tracking is proposed, aiming
at providing a robust model for deformable objects that does not rely on model updates
to work. Instead, it operates on the basic assumption that object parts are connected
by mediating parts, like an arm might connect a hand to the torso of a person. One
advantage of the proposed model is the independence on the actual parts representation.
We suggest to leverage the synergies between two very different methods for establishing
parts correspondences. These methods consist on the one hand of static correspondences,
which are based on training information only. This type of correspondences is robust,
but unable to adapt to new object appearances. A complementary method can be found
in adaptive correspondences, which are computed from a very recent appearance of the
object. Adaptive correspondences lack the robustness of static correspondences, but can
provide necessary accuracy.

To assess the usefulness of the proposed model in practice, we conduct a rigorous
evaluation on a dataset of 77 sequences. This evaluation includes a comparison to state-
of-the art tracking algorithms, the effect of employing different part representations
as well as additional experiments that reveal insights about internal workings of the
proposed model. We find that the proposed deformable part model gives a significant
performance improvement over the state of the art.
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Kurzfassung

Das Bediirfnis, Videosequenzen automatisiert auszuwerten, nimmt im selben Mafie zu
wie die Verfiigbarkeit von Kameras. Ein wichtiger Anwendungstyp benétigt Algorithmen,
die ein zuvor unbekanntes Zielobjekt kontinuierlich verfolgen kénnen. Dieses Problem
ist deswegen schwierig, weil keine Trainingsdaten verwendet werden kénnen, um im
Vorhinein ein Objektmodell zu erstellen. In dieser Dissertation wird dieses Problem One-
Shot-Tracking genannt. Obwohl es unzdhlige Publikationen zu diesem Thema gibt, lassen
die Ergebnisse des Standes der Technik auf realistischen Sequenzen sehr zu wiinschen
tibrig. In dieser Dissertation wird der Standpunkt eingenommen, dass die Deformation
von Zielobjekten das grofite Hindernis darstellt, um zufriedenstellende Ergebnisse zu
erzielen.

Es gibt zwar Ansétze in der Literatur, diese Herausforderung zu meistern, diese sind
jedoch zu simpel fiir komplexe Objekte oder bendtigen eine betrdchtliche Menge an
Trainingsdaten. Es gibt aber per Definitionem in One-Shot-Tracking nur ein einziges
Trainingsbeispiel. Zwar konnen aus der Videosequenz weitere Trainingsdaten extrahiert
werden, dieser Prozess ist allerdings fehleranféllig und kann zu dem unerwiinschten
Effekt der Fehlerakkumulierung fiihren, so dass das Objektmodell keine gute Reprasen-
tation des Zielobjekts mehr darstellt.

In dieser Dissertation wird ein Modell fiir One-Shot-Tracking vorgeschlagen, das auf
keinerlei Modellaktualisierung beruht. An deren Stelle tritt die Annahme, dass ein-
zelne Objektteile durch vermittelnde Objektteile verbunden sind, so wie ein Arm die
Hand und den Torso einer Person verbindet. Ein Vorteil des vorgeschlagenen Modells
ist die Unabhéngigkeit von der Art, wie die Teile reprasentiert werden. Wir schlagen
vor, die Synergien zwischen zwei verschiedenen Methoden zur Herstellung von Teil-
korrespondenzen auszuschdpfen. Diese Methoden bestehen zum Einen aus statischen
Korrespondenzen, die auf Trainingsdaten beruhen. Dieser Korrespondenztyp ist ro-
bust, kann aber keine neue Ansichten des Objekts aufnehmen. Eine komplementére
Methode dazu sind adaptive Korrespondenzen, die anhand einer aktuellen Ansicht
des Objekts berechnet werden. Adaptiven Korrespondenzen fehlt die Robustheit von
statischen Korrespondenzen, sie konnen aber eine hohere Genauigkeit liefern.

Um den Nutzen des vorgeschlagenen Modells zu iiberpriifen, fithren wir eine hieb- und
stichfeste Evaluierung auf einem Datensatz mit 77 Sequenzen durch. Diese Evaluierung
beinhaltet einen Vergleich mit dem Stand der Technik, den Vergleich von unterschied-
lichen Teilmodellen sowie zusédtzliche Experimente, die Einsichten in die Interna des
vorgeschlagenen Modells enthiillen. Wir stellen fest, dass das vorgeschlagene Modell
eine signifikante Verbesserung gegeniiber dem Stand der Technik bringt.
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Notation

Symbol

Meaning

S~ITUNE«Ef€eT R T+ I DTN R0 R

L, norm

rotation

bounding box
descriptor

dimension
deformation threshold
measure

ratio threshold

vote

threshold
correspondence
center/mean
distance

scale

current iteration
displacement vector
part

valid configuration
consensus

overlap

candidate descriptors
dissimilarity
transformation matrix
image

number of
correspondences

Symbol  Meaning
N number of parts
P reference descriptors
R rotation matrix
T sequence length
V4 reference part configuration
7z indicator function
L part correspondences
£A adaptive correspondences
L5 static correspondences
L consensus set
GT Ground Truth
LK Lucas-Kanade method
NN Nearest Neighbor
ALG Algorithmic output
CMT Consensus-based
Matching and Tracking
GHT Generalized Hough
Transform
OPE One-Pass Evaluation
ECDF  Empirical Cumulative
Distribution Function
SNNDR  Second Nearest Neighbor
Distance Ratio
DPMOST  Deformable Part Model for
One-Shot Object Tracking
RANSAC Random Sample Consensus
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Chapter 1

Introduction

Breathe breathe in the air

Don't be afraid to care

Leave but don’t leave me

Look around and choose your own ground

(Pink Floyd, Breathe)

Visual object tracking research has gone a long way since its seminal use in military
applications (Wax, 1955; Kalman, 1960). Due to the ubiquitous availability of cameras and
computing power, more people than ever are striving to employ object tracking methods
in more peaceful usage scenarios. While the demand for out-of-the-box tracking solutions
remains high, object tracking algorithms have failed to stand up to their promise of
delivering accurate, robust and resource-aware results. Object tracking is still considered
to be one of the major unsolved problems in computer vision. This introductory chapter
discusses the very basics of one-shot object tracking, a sub-area of tracking.

1.1 Definition of One-shot Object Tracking

According to Maggio and Cavallaro (2011), the general goal of a tracking algorithm is
to estimate the state of one or more objects of interest in a video sequence composed
of images Ij,. .., It. The state is an abstraction of the output of the algorithm, which
may consist of points, ellipses, axis aligned bounding boxes, rotated bounding boxes,
polygons or silhouettes (Yilmaz et al., 2006)!. Different state models represent objects
at different levels of granularity. For instance, the silhouette of an object is a more fine-
grained representation than an ellipse the object was fitted into. From an application’s
point of view, the most accurate state representation is a pixel-wise segmentation of the
object of interest. In practice however, virtually every single published tracker employs
bounding boxes as the representation of state for reasons of simplicity. A bounding
box b is a rectangle defined by its top left corner and its width and height. While this
representation is simple and easy to use, it is clear that most objects encountered in real-
world scenarios are essentially non-rectangular. This leads to the undesired situation

1" On an even more abstract level, the state may consist of general properties of the object, e.g. visibility,

size, etc.



Chapter 1 Introduction

that either certain object parts protrude beyond the bounding box or background objects
extend into the bounding box. In spite of these effects, we still adopt the ubiquitous use
of bounding boxes as general tracking output to remain comparable to the state of the
art. Still, most of the content in this work is also applicable to other state representations.
We will now narrow down the general definition of Maggio and Cavallaro to a more
specific branch of object tracking that we focus on in this work.

Many authors have studied how to track classes of objects, for instance cars (Koller
etal., 1994) or humans (Gavrila, 1999; Shotton et al., 2011). In these scenarios, it is possible
to incorporate prior knowledge about object of interests into the tracking algorithm. For
instance, one cue that could be used in car tracking is the license plate, which provides a
means of uniquely identifying an object. However, when the object class is unknown
beforehand, class-specific cues are no longer available and more general assumptions
have to be made that ideally apply to all object classes equally well. For example, Lucas
and Kanade (1981) employ the assumption that the object of interest changes its position
from frame to frame only slightly. Another popular assumption made by Comaniciu
et al. (2000) is that objects are uniquely identifiable by their color composition. Clearly,
it is much harder to find assumptions that work for each and every object compared to
assumptions that need to work for an object class only. At the same time, the tracking of
unknown objects is of particular interest, as a solution to it would have a great impact to
both the scientific community and practitioners.

For a long time authors have not bothered to employ a distinct term to distinguish
between different variants of the object tracking problem and referred to them collectively
as visual object tracking. More recently, authors have adopted the term model-free object
tracking? to distinguish tracking of unknown objects from the case when a model can be
obtained beforehand (model-based), for instance by making use of training data. This
term however is the source of perennial confusion, as every tracking algorithm requires
some kind of object model®. To avoid this unpleasant situation, we introduce in this work
the term one-shot object tracking, borrowed from one-shot object learning (Fei-Fei et al.,
2006). The term one-shot object tracking is meant to convey the idea that exactly one
training example of the object is available in the form of the initial bounding box b; in
the first frame Iy of the video sequence. Examples for this are shown in Figure 1.1, where
a person, a circuit board and a ball are selected as the object of interest. The variety in
this small selection of objects already hints at the difficulty of finding a common object
model that is suitable for all of these objects.

In multi-target tracking the relationship between objects of interests can be modeled,
for instance as proposed by L. Zhang and Maaten (2013). Multi-target tracking leads to a
potential improvement of tracking results and we do note that the topic of multi-target
tracking is a fruitful one. However, we restrict the discussion to single-target tracking
to keep the scope of this work within reasonable bounds. In single-target tracking

2
3

Wang and Nevatia (2013) refer to this as category-free tracking.
It is especially confusing when someone tries to introduce a deformable part model.
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Figure 1.1: In one-shot object tracking, no prior information about the object of interest is available
except for the initialization region in the first frame of the video sequence. Images are from Klein
et al. (2010) and Santner et al. (2010).

exactly one object of interest must be designated for tracking. This does include the cases
when multiple other, possibly distracting objects are present in the video sequence. It
is interesting to note that in principle every single-target tracker can be converted to a
primitive multi-target tracker by instantiating the tracking algorithm independently for
each object of interest. In this case however, all interaction between object of interests is
ignored.

The third aspect where we apply a restriction to our discussion refers to the question
when the algorithmic output is performed. An offline tracking algorithm is allowed
to first process all images I3, ..., It from a video sequence and only then output of
the object location for each individual frame. This allows for instance for the use of
optimization algorithms (Andriyenko et al., 2012) where certain constraints such as
trajectory smoothness and visual similarity are enforced simultaneously. While there are
certainly many fruitful applications for offline tracking algorithms, we are interested in
the more general class of tracking algorithms that output the tracking result immediately
after being presented with an image. In this work, we refer to this class of trackers
as online* trackers. To appreciate the difference between offline and online tracking
algorithms, imagine a scenario where an unmanned aerial vehicle (UAV) should follow
an object of interest by means of visual information. Clearly, the UAV needs to react
immediately to an updated position of the object of interest, making the application of
an online tracking algorithms necessary. One can generalize from the extreme cases of
offline and online tracking to algorithms that delay the output for a number of frames.
In an offline tracking algorithm the output is delayed by T — t frames, where T is the
number of frames in a video sequence and ¢ is the number of the current frame. In
online tracking algorithms the output is delayed by exactly 1 frame. While this class of
semi-online trackers is worth investigating, we do not pay any attention to them in this
work.

Based on the above discussion, we restrict the broad object tracking definition of
Maggio and Cavallaro to one-shot single-target online tracking with bounding boxes:

4 This property has also been referred to as causal tracking (Kristan et al., 2016).
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Algorithm 1 One-shot Tracking Loop

Input: Images [, ..., It, bounding box b;
1: initialize(Iy, by)
cfort=2,...,Tdo
by < track(l;)
print(b;)
end for

gk @

Given an image sequence 1y, ..., It and an initial bounding box by in frame I
containing an object of interest, the aim is to find in each frame 1; the bounding box
by that maximizes overlap with the object of interest while minimizing overlap with
all other image areas.

In the remainder of this work, we will use the term one-shot (object) tracking as a
shorthand for this definition. The algorithmic loop that all one-shot tracking algorithms
follow in principle is shown in Algorithm 1.

One question that creators of one-shot tracking algorithms like to push aside (Can-
nons, 2008) is how to obtain the initial bounding box b;. Typically it is assumed that
the initialization is performed by some external mechanism, for instance by a manual
selection or by a different algorithmic component, such as an object detector. We note
that it is desirable to investigate more principled ways of initializing one-shot tracking
algorithms and exclude this topic from our discussion as well.

1.2 Applications

An immediate question that arises from the discussion so far is what one-shot tracking
algorithms are actually good for. Clearly, a general solution for the problem of one-shot
tracking from today’s viewpoint is unrealistic. The existence of such a solution would
imply that one-shot object tracking algorithms could work in each and every setting,
using whatever cheap image sensor is available, even in cases when the object of interest
becomes extremely small. Still, there are a number of cases where one-shot object tracking
algorithms work sufficiently well. These cases have in common that the object of interest is
a more or less unique object in the scene and that no extreme viewpoint variations occur,
such as abruptly changing from a frontal view of the object to a top view of the object. In
this section, we present a selection of these cases mixed with interesting inquiries for
applications that the author of this work has received over a timespan of multiple years.
We will present these cases in a subjectively sorted order by decreasing realizability.
Examples illustrating these use-cases are shown in Figure 1.2.

One desire that arises frequently whenever video data is recorded is to keep an object
of interest in the center of the video. This task, usually carried out by human camera
operators, is well suited for being tackled by one-shot tracking algorithms. For instance,
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Automatic camera adjustment UAV navigation Automated surveillance

Figure 1.2: Example applications of one-shot object tracking. Images are from Graether and
Mueller (2012) and Ferryman and Ellis (2010).

by equipping a camera with one-shot tracking software and appropriate motors, a speaker
wandering around on a stage might be kept centered by adjusting the camera orientation
based on information from a tracking algorithm. Such a scenario is well-suited for one-
shot tracking algorithms, as there is a clearly defined, unique object of interest and the
scene remains roughly constant. Similarly, when people engage in conference calls, they
are mandated to remain in front of the camera so that they can be seen by participants.
Tracking their faces allows for adjusting the camera accordingly. Also note how important
the online property of one-shot tracking algorithms is in this case.

Huge efforts are currently undertaken to make self-driving cars feasible. A self-driving
car is expected to handle dangerous situations on the road at least on the same level of
awareness as a human driver. These situations include for instance unexpected crossings
of pedestrians, other cars that are behaving abnormally or animals on the road. In
all of these cases it is necessary to track the objects that might cause potential harm.
Furthermore, it is especially important to be able to track objects that have not been seen
during an offline training phase, as the number of objects that can appear on a road is
extremely high and any tracking failure might have fatal consequences.

A recurrent task in movie production is the addition of special effects into a recorded
scene. One-shot object tracking can alleviate the tedious procedure of manually anno-
tating objects of interests that need to be enhanced. Typically, these effects are meant
to be applied between two cuts, keeping the difficulties arising from different camera
viewpoints at bay. These techniques might also be implemented in popular video hosting
platforms, allowing for performing these actions in a browser. An advantage in these
scenarios is that the user can interact with the tracking software and is able to correct
errors manually in a semi-automated fashion. It has to be noted however that this task
might require a more fine-grained estimation of the object position than a bounding box,
such as a segmentation.

While researchers have worked for a long time on making robots autonomous, this topic
has gained increasing attention recently due to the advent of affordable unmanned aerial
vehicles (UAVs). These UAVs can be equipped with cameras, allowing for exploiting
the video data in a multitude of ways. One way of doing so is to perform video-based
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flight stabilization. In this application, a non-moving target on the ground is defined that
the UAV can use as a reference for maintaining a stable position. In more sophisticated
scenarios, the target can be allowed to move, making it possible for UAVs to follow objects
of interests and to record them or interact with them as necessary. The recording of
moving objects of interest is especially interesting in the context of action videography,
where athletes as well as hobbyists keep looking for new ways of recording themselves
from unorthodox camera angles.

An ever re-occurring use case of object tracking lies in automated surveillance. Studies
have shown that supervisors of surveillance systems are unable to work effectively for an
extended timespan such as hours (Smith, 2002). The outlook of improved surveillance
performance and reduced costs has led to a considerable interest in automating this task.
However, the biggest obstacle for making one-shot tracking algorithms work effectively
in this scenario is arguably the abrupt transitions and appearance changes when the
object of interest moves from one camera to another. For example, despite excellent
camera coverage, the terrorists responsible for the Boston Marathon bombing in 2013
were identified exclusively by inspecting the video footage manually. While motivated
differently, researchers in biology have begun to use tracking techniques to analyze the
behavior of animals such as mammals or birds in their natural habitats. This scenario
suffers however from similar difficulties.

This small selection of use cases gives an insight into the vast possibilities that one-shot
tracking can offer. Clearly, there are many more interesting areas of applications, such as
augmented reality, games and medical imaging, but we stop the discussion at this point
and turn to the question what the common challenges to all of these problems are.

1.3 Challenges

The goal of designing a one-shot object tracking algorithm is to come up with an object
model that captures the essence of the object of interest and allows for localizing it. In
the next chapter, we will give an overview about different object models that have been
proposed in the scientific literature. Before that, we explore in this section common
challenges encountered when devising models for one-shot object tracking. As a start,
we present an introductory quote to this topic (Box, 1979):

All models are wrong, but some are useful.

While this statement emerged from the discussion of statistical models, it can equally
well be applied to the design of object models for one-shot tracking, where the guiding
principle should be to come up with a model that works instead of a model that is
correct. This quote can also be interpreted as a hint to find the right balance in the level
of generality of the object model. We will explore now certain aspects of what can happen
if the generality is out of balance.

Fundamental problems arise in one-shot object tracking if the model that is used does
not represent the actual object adequately. The first reason for this might be an object
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model that is too general. An object model that is too general will easily fit to other objects
in the scene. Imagine for instance the task of tracking a red ball. It is straightforward
to design an object model that exclusively responds to red colors. Such a simple object
model will fit the red ball perfectly well, however it will also fit to any other red object in
the scene, for instance the red shirt of a child playing with the ball. In the object tracking
community, the challenge when properties expected of the object of interest are exhibited
by other objects in the scene has been referred to as clutter.

To stop the model from fitting the child’s shirt, but still keep fitting the red ball, one
might have the idea to incorporate the shape of the ball into the object model, which
from now on responds only to objects that are both red and round. By doing so, we have
decreased the model generality and made it more specific. But what if the child decides
to squeeze the ball? What if the child occludes a part of the ball? What if another red
ball enters the scene? In these cases, the model is no longer general enough to capture
the essence of the object of interest.

This situation is illustrated schematically in Figure 1.3, where the light gray rectangle
refers to the appearance of all imaginable objects in videos. The dark gray blob refers to
all possible appearances of the object of interest (e.g. the ball) and the white blob refers
to the appearances of all objects that the model responds to. The overlapping area of the
two blobs hence are the appearances of the object that the model can recognize and left
and right of it are missed object appearances and clutter, respectively. A more general
model therefore means that the white area gets larger, while a more specific model means
that the white area gets smaller. At the same time, objects that occupy a large space in the
diagram exhibit a lot of appearance variations, while objects occupying a small area can
be considered more stable. While this figure oversimplifies things slightly, it illustrates
that one-shot object tracking is a very difficult problem, as no clue is available beforehand
about the complexity of the object of interest. Aside from this general consideration, we
will now turn to specific circumstances that make objects more difficult to track.

The main visual challenge in one-shot object tracking are appearance variations. These
appearance variations come about by a multitude of factors, which we will broadly group
into two categories. In the first category we find extrinsic appearance changes. These
changes refer to differences in the relationship between the object of interest and other
objects in the scenes, of which the camera itself is probably the most important one,
as it is always present. As soon as either the object or the camera is moved, the object
appears in the image in a transformed way. Some of these transformations are relatively
easy to handle. Translation, scaling and in-plane rotations® merely change the geometry
of the projected image. As soon as out-of-plane rotations can occur, unseen visual object
data can become available. At the same time, some object parts might disappear due
to self-occlusion. Even a rigid object might appear in a deformed way due to the variety

5 In a 3D-coordinate system with the camera pointing down the z axis, an in-plane rotation refers to

a rotation of the object around the z axis, while the rotation around the x or y axis are referred to as
out-of-plane rotations.
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Figure 1.3: Relationship between the object of interest, the object model and other objects in the
scene (clutter).

of possible transformations. Another challenge in this category are partial occlusions,
which occur whenever parts of the object are not visible due to other objects in the
scene. Other extrinsic appearance changes can be caused by different global or local
illumination. The former can typically be handled by employing suitable features that
compensate for different levels of brightness. The latter, however, can have much more
severe effects and it is currently not clear how to handle these changes in a principled
manner.

The second category contains intrinsic appearance changes. These changes are caused
by the object itself, typically by non-rigid movement. Many object classes can exhibit
this kind of movement, such as humans or animals when moving arms and legs. Also
inanimate objects can show articulated motion, for instance vehicles with movable parts
such as doors or wheels. Similar to the extrinsic deformation of the object, the intrinsic
deformation causes changes in the appearance of the object that are very hard to predict
and present major obstacles for creating robust one-shot tracking algorithms. In summary,
we go so far as to say that the deformation of objects is the major source of errors in one-
shot object tracking. In addition to the challenges presented here, there are numerous
other challenges that make object tracking a difficult task, such as artifacts caused by the
recording process. For a comprehensive enumeration of these challenges we refer the
reader to the surveys mentioned in Chapter 2.
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1.4 Contribution

This work aims at making several contributions to the field of one-shot object tracking
that we will present in the subsequent chapters. The principal contribution of this work
addresses the main challenge presented in the previous section, namely the deformation
of objects. There are a number of approaches in one-shot tracking that have attempted
to deal with this challenge by breaking down the object model into multiple parts. We
will discuss these part-based methods in Chapter 3, where we distinguish between basic
part-based models, constellation models and star-shaped models. For each model, we
will discuss strengths and weaknesses.

Chapter 4 then introduces our contribution, an extension to the star-shaped object
model that allows for dealing with deformations within the model in a more princi-
pled manner than what was previously possible. We refer to this contribution as the
Deformable Part Model for One-Shot Object Tracking (DPMOST). While the DPMOST
rests on simple assumptions, a rich set of properties arises from them. We will discuss
these properties, show how the DPMOST can be made invariant to scaling and rotation
and show its deep connection to agglomerative clustering techniques. As the DPMOST
is independent on the actual method that is used for establishing part correspondences,
we discuss this topic at length in Chapter 5. Here, we take the view that existing corre-
spondence methods either lead to static correspondences or adaptive correspondences.
We argue that these two types are fundamentally different from each other. Static cor-
respondences are based on certain information, such as descriptors found in the initial
object bounding box. This information is likely to be correct and should not be updated
with new information. On the other hand, adaptive correspondences are computed from
frame to frame, thus delivering an up-to-date view of the object of interest at the cost of a
high uncertainty. While static correspondences are able to provide robustness, adaptive
correspondences are able to provide accuracy. We propose a way of maintaining the
advantages of both of these paradigms in the form of static-adaptive correspondences.
Additionally, we show how static correspondences can benefit from the disambiguation
of reference descriptors. This technique is another contribution of this work and refers
to the question how an initial estimate of correspondences can be used to obtain a more
accurate solution. To evaluate our proposed concepts in practice, we formulate the
one-shot tracking approach CMT with the DPMOST being at its core.

To compare a tracking algorithm to the state of the art in a fair manner, a common eval-
uation framework is needed. in Chapter 6 we first discuss relevant evaluation measures
and methodologies and shed a new light on the overlap measure that is heavily used
in computer vision in general and propose a potential alternative. Recently, authors of
one-shot tracking algorithms began to employ a method for visualizing tracking results
that we call success plots. We show an interesting connection of success plots to empirical
cumulative distribution functions (ECDFs), leading to a new interpretation of the com-
monly performed operation of computing the area under the curve of a success plot. We
provide a rigorous experimental evaluation to assess the performance of CMT and thus
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the plausibility of our contributions. This experimental evaluation contains a detailed
analysis of the internals of the DPMOST, quantitative results on a dataset as large as 77
sequences, as well as qualitative results. Lastly, Chapter 8 provides a summary of our
work and discusses potential future research directions. We close with an assessment of
the current state of one-shot object tracking and propel ideas how to advance the field in
general.

Before we present the individual contributions in detail, we give a broad overview
about the field of one-shot tracking literature in the upcoming Chapter 2. This chapter is
meant to provide an introduction to the unfamiliar reader with common concepts used
by one-shot tracking researchers to deal with the various challenges encountered during
the exciting task of tackling one of the most exciting problems science has to offer - how
to make a computer see like a human.

10



Chapter 2

Overview about One-Shot Tracking

And if you listen very hard

The tune will come to you at last
When all are one and one is all
To be a rock and not to roll

(Led Zeppelin, Stairway to Heaven)

While tracking is a relatively young field of study, the tracking literature is massive.
Researchers have undertaken attempts to provide overviews about object tracking ap-
proaches in three qualitative surveys by Yilmaz et al. (2006), Cannons (2008) and X.
Li et al. (2013), of which Cannons arguably provides the most comprehensive and at
the same time the most underrated one. While all of these surveys aim at providing
a broader overview about the topic of visual object tracking, many, if not most of the
presented concepts are applicable to one-shot object tracking as well. In addition to
these qualitative surveys, large-scale experiments have been undertaken recently by Wu
et al. (2013), Kristan et al. (2013) and Smeulders et al. (2014) to assess the performance of
different one-shot tracking algorithms quantitatively. Last, but not least, there exists a
book dedicated exclusively to object tracking (Maggio and Cavallaro, 2011).

In general, designers of one-shot tracking algorithms focus on four central algorith-
mic aspects, as shown in Figure 2.1, which the following four sections are devoted to.
Section 2.1 discusses the prediction step that provides an estimate of the object position
based on previous information. In Section 2.2 the feature extraction step is covered that
identifies and retrieves the relevant information from the image. Section 2.3 deals with
the localization step, in which the final position of the object is determined. Finally, Sec-
tion 2.4 explores the update step, stating how new information can be incorporated into
the object model to adapt it to new appearances of the object. The concatenation of these
four steps is referred to as the object model.

2.1 Prediction

Even before the actual image content is analyzed, it is possible to tell something about
the position of the object of interest by making certain assumptions about the object
motion. For instance, if the object of interest was observed to move at constant speed into

11
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Input

Figure 2.1: The tracking pipeline that is found in virtually every single one-shot tracking algorithm.
The concatenation of these steps is referred to as the object model.

a single direction, it might be reasonable to assume that in the next frame this motion is
continued, making it possible to predict the object position. We will now briefly describe
prediction techniques that have been used in the tracking context.

The Kalman Filter (Kalman, 1960) provides under some very strong assumptions an
optimal way of estimating the hidden state of a system (for instance the position of an
object) when only noisy measurements are available (such as a localization performed on
image data). The main steps of the Kalman Filter are shown in Figure 2.2a, of which we
focus here only on the prediction step, where the new state of the system is predicted by
using a motion model of the target. In the Kalman Filter, a general assumption is that all
variables stem from Gaussian distributions. The estimate for the current state is defined
as

Xy = Axp_1 + Buy_;q, (2.1)

where x;_1 is the state from the previous iteration and A is the deterministic model that
relates the previous state to the current state. B and u allow for modeling control input,
which is usually ignored in computer vision applications. The nature of A as a matrix
restricts the prediction to a linear model, which is one of the main drawbacks of the
original Kalman Filter. This issue has been addressed by the Extended Kalman Filter
(EKF), allowing instead for differentiable functions to be used®. The Kalman Filter is
useful when the statistical properties of a system are well-known and can be can be
modeled using Gaussian distributions. The latter condition does however not apply
to object tracking, as clutter in the scene typically causes the measurement function to
form several modes instead of one, thus conflicting with the assumption of Gaussian
distributions. This particular drawback has been addressed by Particle Filters. This
type of filtering has a similar general setup as the Kalman Filter (Figure 2.2b), but

®  For details refer to Welch and Bishop (1995).
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Figure 2.2: Filtering approaches used for predicting the object position. (a) In the Kalman Filter
all variables are modeled as Gaussians, leading to unimodal distributions. (b) The Particle Filter
allows for multimodal distributions, allowing for tracking through clutter. Image is from Cannons
(2008).

removes the requirement to model the distributions analytically. Instead, samples of
possibly highly complex distributions are propagated, thus allowing for multiple modes
in the distributions. This property allowed the Particle Filter to be used in tracking of
objects through cluttered scenes, which was prominently done in the CONDENSATION
algorithm (Isard and Blake, 1998).

In summary, prediction is useful when suitable assumptions about object motion can
be made, which is feasible in restricted scenarios such as tracking in radar data (Wax,
1955). In one-shot tracking scenarios similar assumptions can hold if the movement of the
object is not overly abrupt. However, in the case of shaking cameras or any other kind of
abrupt motion change, these assumptions fail. Another problem that occurs when relying
too much on the results of previous frames is the problem of error accumulation (Lepetit
and Fua, 2005), eventually leading to tracking failure. Often, researchers employ simple
motion models where the object is allowed to move within a certain radius to reduce the
search space of an object detector (Grabner and Bischof, 2006; Babenko et al., 2009).

2.2 Feature Extraction

One of the most important aspects of every computer vision algorithm is the question
of what image information should be used, usually referred to as feature extraction. Es-
sentially, a feature is a function from image space to a feature space. The basic idea of
using features is to transform the image into a different representation, in which objects
or parts form invariant manifolds and thus can be better separated from each other than
in the image space.

13
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Traditionally, hand-crafted features have been used in the tracking literature, meaning
that the feature extraction process is designed after some guiding principle or best
practice. One exception to this rule are boosting-based techniques that combine many
simple features into a more powerful one in an online manner (Grabner and Bischof,
2006). In the area of object recognition there recently has been a paradigm shift regarding
feature extraction sparked” by the work of Krizhevsky et al. (2012), who demonstrate
that learning feature hierarchies from large labeled datasets is not only possible, but
leads to tremendous performance improvements. The one-shot tracking community has
been relatively unaffected by this novel feature extraction process so far (with the recent
exception of H. Li et al. (2014), who learn a hierarchy of features online), presumably
due to the absence of training data in one-shot scenarios. In this overview, we therefore
focus on hand-crafted features only.

The general aim is to find features that are both discriminative and invariant to various
transformations. A feature is discriminative if it can be expected only on the object
of interest and does not occur on other objects or spuriously in the background. At
the same time, feature invariance is also important, meaning that the outcome of a
feature computation should not change even if the object of interest undergoes certain
transformations, such as scaling, rotation or even affine motion. It has been argued that
these two properties should be traded off, depending on the application (Varma and
Ray, 2007).

One can in principle distinguish between global and local features. A global feature
is designed to represent the information of a whole image region. In contrast, a local
feature is designed to be evaluated at interesting image positions such as corners. While
it is certainly possible to compute global features at interesting image positions or local
teatures over image subregions, this is not necessarily a good idea, as the balance between
invariance and discriminative power might not be given. We will describe selected global
features that have been used in the tracking literature in Section 2.2.1. While there exists
an abundance of different local features, such as edgels or small image patches (Tuytelaars
and Mikolajczyk, 2008), we restrict the discussion of local features to detectors of interest
points in Section 2.2.2 and to the computation of their descriptors in Section 2.2.3. For a
comprehensive overview about feature extraction in object tracking, the reader is referred
to X. Li et al. (2013). Please note that the available literature to the topics in the upcoming
sections is massive. The goal of these sections therefore is to provide an overview about
the different underlying paradigms as well as to introduce some techniques that will be
referred to in later chapters. A profound discussion of the topic of feature extraction is
out of the scope of this work.

7 Infact, the technique used by Krizhevsky et al. (2012) was already developed in the Eighties, but was

made practical only by recent advances in hardware and large amounts of training data.
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(a) Color histogram (b) HOG descriptor

Figure 2.3: Visualization of different global features: (a) color histogram, (b) Histogram of Oriented
Gradients (Dalal and Triggs, 2005).

2.2.1 Global Features

The canonical global feature of an image region is the image region itself, often referred
to as a template. It is prominently used in the method of Lucas and Kanade (1981) to
compute the sparse optical flow between two images. However, also higher-level tracking
algorithms still employ templates as a representation (Ross et al., 2008; Kalal et al., 2012).
In spite of their simplicity, templates are a very discriminative feature. However, already
small deviations in the object appearance might make it impossible to establish the
association between the target template and the object of interest.

One of the most widely used features in object tracking is the color histogram, shown
in Figure 2.3a. It has notably been used in the Mean-Shift tracking algorithm by Co-
maniciu et al. (2000), but keeps occurring in more recent tracking approaches as well
(Zhao et al., 2010). A color histogram assigns each pixel a bin depending on its color
value. Typically, the bins are spaced such that the color space is divided into equal
intervals. Spatial information in a color histogram is disregarded, leading to both the
desired effect that different poses of the object of interest are accounted for (the feature
is invariant to different poses) and the rather undesired effect that objects with similar
color compositions produce similar histograms (the feature is not discriminative). Addi-
tionally, colors are heavily influenced by changes in global and local illumination as well
as different camera devices, which is especially harmful when objects should be tracked
over multiple cameras (Rinner et al., 2015). However, when the object of interest consists
of unique colors, the color histogram still performs remarkably well in single-camera
scenarios.

In order to avoid the negative of aspects of using color information, researchers have
focused on feature extraction from gray-scale images. For less expressive objects, the
Histogram of Oriented Gradients (HOG) has proven to be a remarkably good image
descriptor (Dalal and Triggs, 2005). As shown in Figure 2.3b, the descriptor focuses
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on gradients on the object of interest. Unlike the classical color histogram mentioned
above, in the HOG descriptor local cells are used when summing up the gradients. HOG
descriptors are known to work very well as the input to linear classifiers, such as support
vector machines (Cortes and V. Vapnik, 1995). Initially proposed for the detection of
humans, the HOG descriptor has become the de-facto standard hand-crafted descriptor
in object recognition and has also found its use in one-shot object tracking for instance
by Yu et al. (2008) and Danelljan et al. (2014).

2.2.2 Interest Point Detectors

The principle idea of employing an interest point detector is to find image locations
that differ from their immediate environment. According to Tuytelaars and Mikolajczyk
(2008), the most important property of an interest point detector is its repeatability,
meaning that given two images of the same scene, a high number of corresponding
interest points should be detected.

A class of interest point detectors that was studied early is based on measuring self-
similarity. Moravec (1980) proposes to use those pixels as interest points where in an
8-neighborhood one of the sum of square differences between a candidate patch and the
neighboring patch is high. The main problem with this approach is that this operator is
not isotropic, meaning that under the presence of an edge that is not exactly horizontal,
vertical or diagonal, a point on this edge will be recognized as an interest point, which
is not desired. To remedy this circumstance, Harris and Stephens (1988) propose a
modification to the Moravec operator by analyzing the partial derivatives of the sum of
square differences in x and y direction. Large eigenvalues of the resulting matrix then
determine a corner. Shi and Tomasi (1994) propose a slight modification of the Harris
corner detector by directly using the minimum of the two eigenvectors as an indicator
for corner strength. In practice, this change leads to a detection of more suitable corners.

The previously mentioned methods provide only the position of the interest point, but
do not consider different scales the corners might appear in. In his seminal work, Lowe
(2004) proposes a method called SIFT (Scale-Invariant Feature Transform) that detects
interest points in a scale-invariant manner. Here, minima and maxima of the difference
of Gaussians operator applied in scale space define interesting image regions, as shown
in Figure 2.4a. Additionally, to make feature extraction on these interest points invariant
to rotation, the orientation of the interest point is computed by extracting the gradient
magnitude and direction in a window around it.

Only recently, researchers have studied how to detect and describe local features more
efficiently. Rosten and Drummond (2005)® propose an interest point detector called FAST
(Features from Accelerated Segment Test), the idea of which is depicted in Figure 2.4b.
Here, a circle of pixels is considered around the corner candidate. If there exists a set
of contiguous pixels in the circle which are all brighter than the candidate pixel plus

8 Also see Rosten and Drummond (2006) and Rosten et al. (2010).
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Difference of
Gauissian Gaussian (DOG)

(a) SIFT (b) FAST

Figure 2.4: Interest point detection. (a) Scale-Invariant Feature Transform (Lowe, 2004). (b)
Features from Accelerated Segment Test (Rosten et al., 2010).

a threshold, or all darker minus a threshold, then the candidate is added to the list of
corners. Rosten et al. devised a mechanism that evaluates those pixels first that are most
likely to result in an information gain. This way, many candidates can be rejected very
quickly.

2.2.3 Local Descriptors

Haar-like features (Figure 2.5a) were popularized in their seminal work by Viola and
Jones (2001) for face detection. The output of a Haar feature is defined by the subtraction
of the sum of all pixels from two or more disjoint image regions. In spite of their apparent
primitivity, the combination of many of these features leads to a powerful descriptor.
As in Viola and Jones (2001), suitable positions for Haar features are often learned in a
training phase. An appealing property of Haar features is that they can be evaluated
in constant time when integral images are used. Haar features are known to work very
well on faces, as they capture their brightness distribution effectively. Haar features have
been used in a tracking context by Grabner and Bischof (2006) for online selection of
features as well as in Kalal, Matas, et al. (2010).

In SIFT (Lowe, 2004), a descriptor similar to HOG is computed around interest points,
as shown in Figure 2.5b, capturing local gradient directions around the interest point.
While the SIFT descriptor has initially been rejected by the computer vision community
as not being principled enough, it was demonstrated in practice that it outperformed
basically every other feature descriptor that existed to this date. One reason why SIFT has
not been used extensively in the tracking literature (with the recent exception of Pernici
and Del Bimbo, 2014) is its relative expensive computation. To remedy this circumstance,
(Bay et al., 2006) propose SURF (speeded-up robust features), decreasing the computing
time considerably.

Lepetit et al. (2005) propose an interesting perspective on the simultaneous description
and matching of interest points. In their work, a classifier is trained during a learning
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phase that can then distinguish different interest points on the object. Based on a single
example of the object of interest artificial training data is synthesized by warping the
initial patch with affine transformations. The classifier itself consists of multiple Random
Ferns (Ozuysal et al., 2007) which are similar in spirit to Random Forests (Breiman, 2001).
In Random Ferns, very high classification speed can be obtained by performing fast
binary tests on random pixel pairs on each layer of the random ferns instead of computing
a full image descriptor. These tests merely measure which of the two pixels has a higher
brightness value. It has to be noted that the pixel comparisons are generated only once,
so that future comparisons yield meaningful results.

Based on the idea of Random Ferns, Calonder et al. (2010)? propose an extremely fast
keypoint descriptor called BRIEF (Binary Robust Elementary Independent Features), as
shown in Figure 2.5¢c. The principle idea is to compute a feature composed of binary
elements only. Similar to Random Ferns, each element of the vector is determined
by a simple brightness comparison between two randomly determined pixel positions
within a predefined area around the keypoint. These binary descriptors can be compared
efficiently by employing the Hamming distance as a similarity measure. This is equivalent
to a bitwise XOR operation, which can be performed efficiently on modern computing
architectures. Rublee et al. (2011) extend this concept in their work called ORB (Oriented
FAST and Rotated BRIEF) by introducing invariance to rotation by incorporating corner
orientations.

Recently, authors have investigated how to improve upon the random arrangement of
the BRIEF pattern. As shown in Figure 2.5d, in BRISK (Binary Robust Invariant Scalable
Keypoints) Leutenegger et al. (2011) apply Gaussian smoothing with different kernel
sizes to individual patches around test positions, as denoted by the blue dots and the
red circles, respectively. Additionally, the test positions are arranged on concentric
circles, allowing for invariance to rotation. Alahi et al. (2012) employ a similar, but more
biologically inspired idea. In their approach called FREAK (Fast Retina Keypoint) they
propose to employ a higher density of test positions at the center of the keypoint, similar
to how the human eye has evolved. Additionally, the evaluation of the descriptor is
performed only gradually to save processing time, as many non-informative keypoints
can be discarded by looking at very few test positions.

2.3 Localization

The localization step in one-shot object tracking refers to the question how the extracted
features are used to infer the position of the object of interest. These models can be
broadly divided into two categories. Approaches that employ error surfaces or similarity
functions are often used for a local search (Section 2.3.1). On the other hand, approaches
that employ a classifier to distinguish between the object and background in feature
space are referred to as tracking-by-detection methods (Section 2.3.2).

9 Also see Calonder et al. (2012).
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Figure 2.5: Different local descriptors. (a) Haar-like features (Viola and Jones, 2001), (b) Scale-
Invariant Feature Transform (Lowe, 2004), (c) Binary Robust Elementary Independent Features
(Calonder et al., 2010), (d) Binary Robust Invariant Scalable Keypoints (Leutenegger et al., 2011).

2.3.1 Local Search

As discussed in Section 2.1, the predicted motion of the target in one-shot tracking is not
a helpful cue, if strong temporal continuity cannot be guaranteed. However, as noted by
Cannons (2008) the information from previous frames is still valuable and can be used to
serve as a starting point for a local search. The principle assumption behind employing a
local search in object tracking approaches is that the differences between adjacent video
frames should be small.

One approach that exploits this assumption directly is the method of Lucas and
Kanade (1981). This method, initially proposed for image registration, is typically used
to compute the sparse optic flow between video frames, which is defined as the motion
between two images at a specific image position x. It is important to note that in contrast
to the motion models discussed in Section 2.1 the motion model employed by Lucas and
Kanade does not depend on the motion observed in previous frames. Without going into
mathematical details, the principal idea of Lucas and Kanade is to perform an iterative
local search based on Newton’s method for estimating the displacement v of the point x,
as shown in a simplified manner in Figure 2.6a for the one-dimensional case.

Another example for a local search in tracking was proposed in the Mean-Shift tracker
of Comaniciu et al. (2000), who model the object of interest as a color histogram. The
basic idea is to perform a local search in the current frame beginning from the last known
object position in the previous frame. By defining a similarity function between the
object template and the image content, a surface similar to Figure 2.6b is created, where
the circle denotes the starting point of the local search. The idea is then to iteratively
reach the maximum of this compatibility surface (the triangle in Figure 2.6b), which
is carried out in this work by the Mean-Shift algorithm. This simple algorithm states
that the new position should be moved towards the center of mass of the compatibility
surface. Typically, only few iterations are necessary to reach this goal.

While both of these methods are more complex than what is described here, some
important conclusions can be drawn from them. For a local search to work, a more or
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Figure 2.6: Localization by local search. (a) Optical flow in one dimension as in the method
of Lucas and Kanade (1981). The displacement ¥ is iteratively estimated by means of the the
spatial derivative I, and the temporal derivative I;. Image is from Bradski and Kaehler (2008).
(b) Mean-Shift tracking (Comaniciu et al., 2000). Object localization is performed by iteratively
climbing to the maximum of a compatibility surface, in this case the Bhattacharyya coefficient.

less smooth error function or compatibility function has to be defined, that can be used
to find interesting positions on these functions, such as minima, maxima or zeros. These
error surfaces offer a very fast way of obtaining an accurate localization. Compared to
tracking-by-detection methods, which we will discuss in the next section, object models
for local searches are kept relatively simple, leading to a certain lack of robustness. This
is clear by appreciating that local searches can always get stuck in local extrema before
the global maximum is reached. However, in certain circumstances this property can
even be advantageous, for instance when a similar object appears that by chance achieves
a higher similarity score. In this case, it is advantageous to look for the closest local
maximum instead of the global maximum. Additionally, a local search can be much
faster than a global one.

2.3.2 Tracking-by-Detection

While relying on a purely local search is accurate over few frames, in the long run there is
the chance that a local search is disrupted, which can for instance occur by abrupt camera
motion. In recent years, there has been a trend in tracking research of freeing oneself
from strong assumptions and thus ignoring positional information from previous frames
altogether. This tracking paradigm has become known as tracking-by-detection. Tracking-
by-detection is closely related to classical object detection in still images. The main
difference however is that no offline training data is available for training classifiers. A
common route in tracking research therefore has been to adapt offline learning techniques
to the online domain (Grabner and Bischof, 2006; Babenko et al., 2009; Saffari et al., 2009).
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Figure 2.7: Sliding window classification is an essential part of tracking-by-detection approaches,
independent of whether the search is performed for objects as a whole or individual object parts.

In contrast to local searches, object models in tracking-by-detection methods are often
incrementally refined to capture the entire variability of the object’s appearance.

Numerous tracking-by-detection approaches based on diverse object models have
been proposed. These methods have in common the ability of globally searching the
input image for the object of interest, even though several methods artificially restrict
the classifier search space (such as Avidan, 2004) to enforce temporal constraints. In
one way or the other, the global search is accomplished by evaluating a classifier in a
sliding-window manner, as shown in Figure 2.7. On a first glance, methods that rely on
keypoints (Maresca and Petrosino, 2013; Pernici and Del Bimbo, 2014) or other bottom-up
techniques (Godec et al., 2011) seem to escape this paradigm. However, to detect the
individual object parts a sliding-window classifier is still necessary (Lehmann et al., 2011).
As an exhaustive search can be very expensive, it is important to employ an object model
that can be evaluated quickly. It can be argued that the sliding-window-based localization
of tracking-by-detection methods is less accurate than performing a local search, since
for reasons of efficiency not every possible subwindow is evaluated, especially when the
search is performed in multiple scales.

The classifiers that underlie every sliding window detector can be broadly categorized
into generative and discriminative classifiers (X. Li et al., 2013). Generative classifiers aim
at answering the question what probability distribution might have generated the data.
Unfortunately, the probability distributions in computer vision however are typically
very complex and non-Gaussian, making this a daunting task. Also, it has been argued
that one should never solve a problem that is more general than one actually needs to
solve (V. N. Vapnik, 1995). Instead, discriminative classifiers focus on finding a decision
boundary between the object and background in feature space, thus allowing more
freedom in the design of the classifier. As discriminative classifiers also tend to be faster
than generative ones, they are typically favored in tracking-by-detection methods.
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2.4 Model Update

A perennial source of failure in object tracking concerns the question of how and when to
update an object model so that it remains a good representation of the object of interest.
This is important as the sum of internal and external appearance variations let the object
inevitably appear in a different way compared to its initial appearance. In this section,
we will discuss different paradigms that have been used in the literature to address
this aspect. The question of how to update an object model without erasing relevant
information is closely related to the stability-plasticity dilemma, which relates to the
trade-off between the stability required to retain information and the plasticity required
for learning something new (Grossberg, 1987) when the capacity of the model is limited.
A complete stable model will retain all information in it but is unable to incorporate any
new information. On the other hand, a completely plastic model will immediately adapt
to new information, but any information stored in the model to this date will be lost.

Matthews et al. (2004) perform a study on this subject based on templates, but much of
this work is applicable to other object representations as well. Matthews et al. suggest that
the simplest possible strategy is not to update the model at all, as shown in the top row
of Figure 2.8a. While this strategy prevents any erroneous updates, it also is impossible
to add any new information to the object model. In case of severe appearance changes
this strategy is prone to failure. Another naive method is to perform a complete update,
meaning that in every frame the original object model is replaced with a representation
computed in the current frame. This strategy is often used in algorithms performing a
local search, such as in Lucas and Kanade (1981). The main problem with this strategy
is that it encourages drift, as shown in the center row of Figure 2.8a. Drift refers to the
situation when the object model gradually adapts to a different object, which is typically
the background. The reason for this situation is that output of a tracking algorithm is
usually never aligned perfectly well to the object, where the ubiquitous use of bounding
boxes certainly adds its share to this effect. When a mis-aligned bounding box is used
to extract new features, there is a chance that instead of the original object, parts of
other objects “leak” into the object model. This way, with every update, small errors
accumulate until after some time the tracking algorithm adapts to a background object.
Matthews et al. (2004) suggest a simple, but very powerful idea for drift-correction during
model update. Essentially, the idea put forward by Matthews et al. is to perform an
update using the newly extracted features only if the localization using the initial model
is similar to the localization performed using the latest model, depending on a threshold.
While this strategy can be considered to be primitive as well and is in no way guaranteed
to yield good results, it can serve as the basic insight that not all model updates are
equally plausible. It is safe to say that the constraints that should be employed for
updating object models robustly are currently unknown. It is a very interesting research
question whether such constraints exists at all. Nevertheless, researchers have come up
with heuristics to tackle this problem.

Instead of blindly updating the complete model in every frame, Collins et al. (2005)
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Figure 2.8: Different strategies for updating the model . (a) Drift correction according to Matthews
et al. (2004). Top row: No update is performed. Center row: Update is performed in every frame.
Bottom row: Update with drift-correction is performed. (b) In MIL tracking (Babenko et al.,
2009), training examples are presented in bags, allowing the learner to decide which examples
are suitable for updating the classifier.

and Grabner and Bischof (2006) aim at finding the most discriminative features using
an online learning mechanism. This way, background features are excluded from the
object model. It can however be argued that discriminative features might also appear
in the background, for instance due to a mis-alignment of the bounding box. A more
principled way of dealing with this topic has been proposed by Grabner et al. (2008), who
see object tracking as a semi-supervised learning problem. By imposing a prior on the
tirst image patch, the incoming image data is treated as unlabeled data. Semi-supervised
learning algorithms can then be used to label this unlabeled data. However, if the prior
is too strong, it is hard for the labeling algorithm to make the connection to the correct
unlabeled data. If the prior is too weak, all unlabeled data suddenly becomes very similar
to the initial appearance of the model.

Babenko et al. (2009) address the problem of erroneous model updates by employing
Multiple Instance Learning, as shown in Figure 2.8b. In standard binary classification,
each training sample is either labeled as positive or negative, as shown in columns A and
B. In multiple instance learning, training examples are no longer labeled individually,
but are presented as labeled “bags”, as shown in column C. A positive bag is assumed
to contain at least one positive training example, all other bags are negative. This way,
the learner has more options in finding a decision boundary, which proves beneficial in
object tracking. Another very successful way of leveraging the semi-supervised learning
paradigm has been proposed by Kalal et al. (2012), which will be discussed at length in
Section 3.1. Here, the optic flow is used as a guiding principle for selecting positive and
negative training examples.

In summary, it seems that the best strategy for permanently updating the model is to
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perform the updates as conservatively as the object of interest allows. However, certain
objects require more aggressive model updates due to their fast-changing appearance.
How the update rules come about is a matter of the concrete object model in use and no
clear answer can be given in general.

2.5 Conclusion

This chapter has given the reader an overview about the main aspects that have to be
dealt with when devising an object model for the problem of one-shot object tracking. It
should have become clear by now that one-shot object tracking is not a trivial task and
requires a well-working interplay between the different subproblems prediction, feature
extraction, localization and update. In the next chapter we will discuss strengths and
weaknesses of a special class of object models, where the object model is broken down
into individual parts. Here, all of the steps presented in this chapter are not considered
for the object as a whole, but rather on the level of individual object parts.
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You break my heart

You tear me up in so many parts
One part for you and one for me
That is how it ought to be

(Das Pop, You)

In the previous chapter, we have given a very broad overview about the field of one-shot
object tracking and have discussed important aspects that object tracking researchers
have focused their attention to. A fundamental question in one-shot object tracking
that we discuss in this chapter is whether to model the object as a holistic!® entity or
to break down the object model into parts. Part-based object models are employed in
order to address some of the challenges discussed in Section 1.3. As an example for a
one-shot algorithm that is based on a global object model, in Section 3.1 we discuss the
recently proposed object tracking method TLD. To appreciate why part-based models
can solve some of the challenges encountered when global object models are used, we
then discuss general properties of part-based object models and contrast them to global
object models in Section 3.2. Next, we present and analyze general robust part-based
model-fitting techniques that have been used for computer vision in Section 3.3. We will
then look closer at two types of part-based models that have been used in the one-shot
tracking literature, namely constellation models in Section 3.4 and star-shaped models in
Section 3.5. Finally, we discuss the part-based one-shot tracking approach HoughTrack
in Section 3.6. Note that the content is this chapter is not meant to provide an exhaustive
overview about the numerous part-based models that exist in computer vision, but rather
to discuss interesting work that is relevant to the problem of one-shot tracking.

3.1 Global Object Model in TLD

In their work called TLD (Tracking-Learning-Detection), Kalal et al. interpret object
tracking as a semi-supervised learning problem. In semi-supervised machine learning, a
learner is presented only with a small number of labeled examples. Additionally, at its
disposal is a usually much larger number of unlabeled examples. As mentioned before,

10 We use the terms “holistic” and “global” interchangeably in the context of object models.
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Figure 3.1: In Tracking-Learning-Detection (Kalal, Matas, et al., 2010), a short-term tracker (shown
in black) is used to collect positive training data (shown in yellow) and negative training data
(shown in red) for an object detector.

the aim of semi-supervised learning is to find a decision boundary between positive and
negative examples that takes into account the unlabeled data, leading to a hopefully better
result than relying on the labeled data alone. In classical machine learning, clustering
methods are often used to find structure in the unlabeled data (Chapelle et al., 2006).
Kalal et al. instead employ a relatively simple short-term tracker as a way of collecting
positive training examples, as shown in Figure 3.1. These positive training examples are
used to train an object detector that is based on a global object model with the aim of
being able to re-initialize the tracking process when the optic flow component loses the
target. Importantly, false positive responses from the object detector are fed back to the
training process.

Kalal et al. employ a cascaded classifier for object detection, as shown in Figure 3.2. Each
of these stages contains an increasingly complex classifier. The first stage is a variance
filter that rejects homogeneous image regions, the threshold of which is determined
by the variance of the first image patch. The second stage consists of a Random Fern
classifier (Ozuysal et al., 2010), an ensemble classifier whose most important property is
its extremely high classification speed. Random Ferns come with the cost of working with
binary feature vectors only. Kalal et al. employ a feature descriptor that is reminiscent of
BRIEF (Calonder et al., 2012). The final stage of the classifier cascade is a nearest neighbor
classifier based on the normalized cross-correlation of resized image patches (15 x 15
pixels) as a distance measure. The classifier cascade is evaluated in a sliding-window
manner over the whole image in every frame. If after a non-maximal suppression step
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Figure 3.2: The object detection cascade in TLD (Kalal et al., 2012) consists of increasingly complex
classifiers.

exactly one detection remains, the short-term tracker is re-initialized to this detection.

While 