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Abstract

We propose a novel keypoint-based method for long-term
model-free object tracking in a combined matching-and-
tracking framework. In order to localise the object in every
frame, each keypoint casts votes for the object center. As
erroneous keypoints are hard to avoid, we employ a novel
consensus-based scheme for outlier detection in the voting
behaviour. To make this approach computationally feasible,
we propose not to employ an accumulator space for votes,
but rather to cluster votes directly in the image space. By
transforming votes based on the current keypoint constel-
lation, we account for changes of the object in scale and
rotation. In contrast to competing approaches, we refrain
from updating the appearance information, thus avoiding
the danger of making errors. The use of fast keypoint detec-
tors and binary descriptors allows for our implementation
to run in real-time. We demonstrate experimentally on a
diverse dataset that is as large as 60 sequences that our
method outperforms the state-of-the-art when high accu-
racy is required and visualise these results by employing
a variant of success plots.

1. Introduction

The tracking of a priori unknown objects has drawn con-
siderable interest and has established its place in the track-
ing community under the name model-free object track-
ing. Typically, the only information that is presented to the
tracker is the initialising region in the first frame of the im-
age sequence and the task of the tracker is to come up with
an estimate of the current location of the object of interest.
The main advantage of model-free methods is their appli-
cability in various scenarios without requiring any domain-
specific knowledge or training. An important property of
tracking algorithms is the ability to handle the complete dis-
appearance of the object for an undefined amount of time.
Trackers that obviate the need for external re-initialisation
are said to address the long-term object tracking problem.

While there has been progress in making model-free ob-
ject tracking methods more robust, the problem itself is es-
sentially unsolved due to challenges stemming from partial
and full occlusions, clutter, and various types of appear-
ance changes caused by changes in object or camera pose
and local or global illumination [20]. As the object of in-
terest is unknown beforehand, it is impossible to employ
offline machine learning techniques to account for the vari-
ability of the object appearance introduced by these chal-
lenges. Instead, online learning algorithms have been em-
ployed [7, 2, 25] to adapt the object model to changes in
the appearance of the object. In practice however, updating
a model often introduces errors, as there are no hard class
labels available.

In this work we argue that the the choice of the object
representation plays an important role in order to be able
to overcome these challenges. For instance, it is difficult to
express a local change in appearance by a global model,
such as a histogram. Models that decompose the object
into parts [1, 27, 13, 30] are more robust to the afore-
mentioned nuisances, as local changes only affect individ-
ual parts. Even when individual parts are lost or in an er-
roneous state, other object parts can compensate for them.
Many approaches employ rectangular axis-aligned regions
for extracting the features of the object and its parts. While
computationally convenient, this method has the shortcom-
ing of being non-invariant against changes in scale and ro-
tation. Instead, keypoint detectors such as SIFT [18] and
BRISK [16] estimate these properties out of the image data,
making keypoints an ideal representation for a parts-pased
object model. Recently, the advent of extremely fast key-
point detectors and binary descriptors [24, 16] has dramat-
ically decreased the computational burden of detecting and
matching corresponding keypoints, allowing for the use of
keypoints in a real-time tracking system. Virtually all state-
of-the art approaches update the appearance information
during tracking. There is evidence that the combination of
static model elements and adaptive elements improve the
robustness of tracking algorithms [14, 26]. We propose to



decouple the static and the dynamic model elements in a
radical fashion by basing the appearance model on the first
frame only and by addressing changes in appearance by em-
ploying an adaptive tracking technique.

The major contribution of this work is the formulation of
the novel tracking approach CMT that employs a keypoint-
based object representation. Corresponding keypoints in
each frame are found by a combined matching-and-tracking
approach. The second contribution is a novel method for
identifying keypoints that are in consensus based on a vot-
ing mechanism that takes into account the current geomet-
ric constellation of the keypoints in order to scale and ro-
tate votes accordingly. Outlier keypoints are identified and
removed by clustering the votes. These estimates are also
used to identify the pose of the object of interest. The third
contribution is a visualisation of the tracking performance
of competing trackers in success plots, enabling the quick
assessment of tracker performance over a large number of
sequences for different requirements on per-sequence per-
formance.

2. Related Work

There has been a considerable amount of work dedicated
to parts-based object representations in model-free tracking.
In what can be considered a very basic form of a parts-based
model, Adam et al. [1] represent the object by multiple im-
age patches (fragments). The patches are arranged in a pre-
defined grid, and each patch votes for the position of the
object of interest in a sliding-window framework. The rigid
arrangement of the patches makes it impossible to allow for
rotations or articulations of the object. In [27] these restric-
tions are addressed by updating the position of the patches
in each frame. Hua et al. [13] propose a part-based approach
based on the theory of Markov networks. Instead of blindly
fusing all measurements into a single one, they examine the
inconsistency of parts to make the approach robust to oc-
clusion, clutter and appearance changes. Zhang et al. [30]
employ a connected model to introduce deformation costs
into an optimisation problem for multi-target tracking, but
suggest that such a model is also applicable to parts-based
single-target tracking.

While there is an abundance of work on keypoint-
based pose estimation, virtually all of these approaches
rely on a pre-learned database of descriptors to be avail-
able. There also are some methods that create databases
on-the-fly [23, 22], True model-free approaches include the
work of Grabner et al. [9], who propose an approach where
keypoint matching is performed using a boosting classifier.
When a plausible set of matches is found, the newly discov-
ered appearances of the keypoints are interpreted as training
examples and used to update the classifier. In a similar fash-
ion, Hare et al. [11] attach a weight to each keypoint and
update these weights in a unifying structured output learn-

Figure 1: The estimation of homographies is error-prone
when planarity assumptions do not hold.

ing framework that spans over both the matching stage and
the robust computation of a transformation matrix. Both of
these approaches compute homographies between the orig-
inal set of keypoints and the keypoints in the current by em-
ploying robust statistical methods such as RANSAC. How-
ever, the estimation of homographies gives poor results for
non-planar objects. In Figure 1 we show an example where
the estimation of the homography gives distorted results,
even though the keypoint association was performed cor-
rectly. Maresca et al. [21] employ multiple techniques for
keypoint detection and description in a fallback framework
and employ the Generalised Hough Transform (GHT [3])
for detecting outliers.

In the GHT, votes are collected in an accumulator space
and maxima in this space constitute detections. Voting
schemes have been used extensively in the context of shape
recognition. A similar mechanism has been presented by
Leibe et al. [15] for object categorisation and segmenta-
tion, where voting is performed by keypoints according to a
learned codebook. Gall et al. [5] train class-specific Hough
forests that directly map image patch appearance into a
probabilistic vote. Godec et al. [6] adapt this technique to
the online learning scenario and compute an object segmen-
tation in order to update the Hough forests and use this tech-
nique for the tracking of non-rigid objects. In [4] this work
is extended to employ pixel-based descriptors, mainly de-
creasing the computational cost.

3. Approach

Given a sequence of images I1, . . . , In, and an initialis-
ing region b1 in I1, our aim in each frame of the sequence is
to recover the pose of the object of interest or to indicate that
the object is not visible. We estimate the object pose up to
its center µ, its scale s and the degree of its in-plane rotation
α, where s and α are estimated with respect to the initial ap-
pearance of the object. For simplicity, we restrict ourselves
to axis-aligned rectangular initialising regions. The remain-
der of this section describes our approach in detail, while
an algorithmic formulation is given in Algorithm 1. In the
following, we assume that a method for keypoint detection
and description is available.



Algorithm 1 CMT
Input: I1, . . . , In, b1
Output: b2, . . . , bn

1: O ← detect(I1, b1)
2: K1 ← O

3: for t← 2, . . . , n do

4: P ← detect(It)
5: M ← match(P,O)
6: T ← track(Kt−1, It−1, It)
7: K ′ ← T ∪M

8: s← estimate_scale(K ′, O)
9: α← estimate_rotation(K ′, O)

10: V ← vote(K ′, O, s, α)
11: V c ← consensus(V )
12: Kt ← vote−1(V c)
13: if |V c| ≥ θ ·NO then

14: µ← 1

n
∑n

i=1
V c

i
15: bt ← bounding_box(b1, µ, s, α)
16: else

17: bt ← ∅.
18: end if

19: end for

3.1. Matching and Tracking of Keypoints

We base our object model on a set of keypoints

O = {(ri, fi)}
NO

i=1
, (1)

where each keypoint denotes a location r ∈ R
2 in tem-

plate coordinates and a descriptor f . We employ binary
descriptors f ∈ {0, 1}d for computational reasons, but the
presented ideas are applicable to real-valued descriptors as
well. We initialise O by detecting and describing keypoints
in I1 that are inside the initialising region b1, followed by
a mean-normalisation of the keypoint locations. In order
to recover the object pose, in each It with t ≥ 2 we are
interested in finding a set of corresponding keypoints

Kt = {(ai,mi)}
NKt

i=1
, (2)

where a refers to the keypoint position in absolute image
coordinates and m is the index of the corresponding key-
point in O. By both matching and tracking keypoints, we
follow two complementary strategies for finding Kt.

We detect and describe candidate keypoints

P = {(ai, fi)}
NP

i=1
, (3)

in It that are determined by their absolute position a and
their descriptor f . For each candidate keypoint, we compute
the Hamming distance

d(f1, f2) =

d∑

i=1

XOR(f1

i , f
2

i ) (4)

Figure 2: Initialisation of voting vectors occurs in the first
frame only. Votes are scaled and rotated according to the
current keypoint constellation.

of its descriptor to the descriptors of all keypoints found in
I1, including background keypoints. We match candidate
keypoints in P to keypoints in I1 by requiring that the near-
est neighbour must be closer than the second-nearest neigh-
bour by a certain ratio ρ. The set of matched keypoints M
then consists of the subset of keypoint locations in P that
match to O, augmented (in analogy to Eq. 2) with the cor-
responding model keypoint index. Candidate keypoints that
match to background keypoints are excluded from M .

For tracking, we compute the displacement of each key-
point in Kt−1 from It−1 to It by employing the pyramidal
variant of the method of Lucas and Kanade for estimating
optical flow [19]. For t = 2, K1 is obtained by transform-
ing O to absolute image coordinates. The set of tracked
keypoints T is then obtained by updating the keypoint loca-
tions in Kt−1 while maintaining the keypoint index. Key-
points that fail to be tracked or that end up outside the image
boundaries are removed from T .

We fuse T and M into a set K ′ of size NK′
, discard-

ing all tracked keypoints when there exists a matched key-
point associated with the same model keypoint. Intuitively,
matched keypoints are more robust as they do not rely on a
recursive estimation. Typically, K ′ still contains outliers as
there is some intrinsic ambiguity in the process of matching
and tracking keypoints.

3.2. Voting

In order to locate the object of interest, each keypoint
(a,m) in K ′ casts a single vote h(a,m) → R

2 for the ob-
ject center, resulting in a set of votes

V = {h(ai,mi)}
NK′

i=1
, (5)

as shown in Figure 2. In its simplest form, we consider only
translational changes of the object

hT (a,m) = a− rm, (6)

where rm is the relative position of the corresponding key-
point in O. When the scale of the object changes, votes
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Figure 3: The pairwise angular change between keypoints
is used to estimate the object rotation. Here, the angular
change between the initial constellation of two keypoints
and their constellation at a later stage is 85◦.

either overshoot the object center or fall short. We over-
come this limitation by scaling the votes by a single scale
factor s. Eq. 6 therefore becomes

hS(a,m) = a− s · rm. (7)

In order to compute s, we rely on the pairwise Euclidean
distance between ai and aj in K ′ and compare these dis-
tances to the distances of the corresponding keypoints rmi

and rmj
in O. Let ai,j = ai − aj and ri,j = rmi

− rmj
,

then the distribution of all individual changes in scale is

Ds =

{
‖ai,j‖

‖ri,j‖
, i 6= j

}
. (8)

The median of this distribution s = med (Ds) is a suitable
estimate for the scale as it is robust against outliers.

When the object undergoes an in-plane rotation, votes
have to be rotated accordingly in order to still target the
object center. We do so by updating Eq. 7 to become

hR(a,m) = a− s ·Rrm, (9)

where R is the 2D rotation matrix

R =

(
cosα − sinα
sinα cosα

)
. (10)

We estimate the rotation α by analysing the pairwise an-
gular change between keypoints with respect to their ini-
tial constellation, as depicted in Figure 3, by employing the
function atan21

αi,j = atan2(ai,j
y , ai,j

x )− atan2(ri,j
y , ri,j

x ). (11)

We obtain a robust estimate for the rotation of the object
from the distribution of all pairwise angular changes

Dα = {αi,j , i 6= j} . (12)

by computing its median α = med (Dα). We refrain from
using the information about scale and rotation that is avail-
able through most keypoint detectors, as we have found it
not to be reliable enough.

1The function atan2(y, x) computes the arctangent of its argument
while taking into account the appropriate quadrant.

a

V c

δ

Figure 4: Finding consensus in voting behaviour. Left: Cast
votes are clustered based on their Euclidean distance and a
cutoff threshold δ. The consensus cluster V c is identified
based on the highest number of votes. Right: Keypoints that
voted into the consensus cluster are kept, all other keypoints
are removed.

3.3. Consensus

Whenever either the location a or the model index m

of an entry in K ′ is wrong, votes will not target the object
center, but rather point to arbitrary image locations. Before
calculating the object center µ, we identify and remove out-
lier keypoints and their votes by looking for consensus in
the voting behaviour as depicted in Figure 4. To this end,
we apply hierarchical agglomerative clustering [29] on V

based on the Euclidean distance as a dissimilarity measure.
In this type of clustering, data is organised into hierarchi-
cal structures according to a proximity matrix, resulting in
a dendrogram that is then cut off at a certain threshold δ.
Thus, V is partitioned into disjoint subsets V 1, . . . , V m.
We consider the subset containing the largest number of el-
ements to be the consensus cluster V c and set Kt to the
subset of K ′ that voted into V c. Hierarchical clustering is
a relatively expensive operation, as it is in O(N2), but as
V typically does not exceed 200 elements, in our case it is
rather cheap. A central advantage of our method is that it
does not make any assumptions about the planarity of ob-
jects. Instead, keypoints are allowed to drift slightly from
their original positions. The degree of allowed flexibility is
steered by the parameter δ.

If V c contains less than θ · |O| elements, we assume the
object is not visible. Otherwise, we turn the votes in the
consensus cluster into an estimate for the object center

µ =
1

n

n∑

i=1

V c
i , (13)

where n = |V c|. The object center µ, together with the
scale s and the rotation α defines the pose of the object of
interest. As the final output, we compute a non-axis-aligned
bounding box by transforming the four corners c1, . . . , c4 of



Figure 5: Sequences used for quantitatively assessing
tracker performance. From left to right, top to bottom:
ball, board, box, car, car 2, carchase, cup on table, dog1,
gym, juice, jumping, lemming, liquor, mountain-bike, per-
son, person crossing, person partially occluded, singer,
sylvester, track running.

b1 by
c′

i = µ+ s ·Rci, (14)

where R is the rotation matrix from Eq. 10. The parameter
θ ∈ [0, 1] influences the receiver operating characteristics,
as uncertain results are suppressed for higher values of θ.

4. Experiments

Our main claim is that our proposed method performs
accurately under changes in translation, scale and rotation
different object classes, while being robust to partial and full
occlusions as well as to a variety of changes in appearance.
In order to support this claim, we collected 20 sequences
that were used previously for evaluating tracking methods.
As it can be seen in Figure 5, the sequences encompass a
wide range of different objects and scenarios. In our imple-
mentation2, we employ the same parameter values for all
sequences during the quantitative evaluation. For the detec-
tion and description of keypoints, we employ BRISK [16]
with a dimensionality d = 512. For matching candidate
keypoints to the model, we follow [18] and set the ratio
threshold ρ = 0.8. We experimented with different val-
ues of the cut-off threshold and found δ = 20 to give good
results. We require that at least 10% of the initial keypoints
must be found (θ = 0.1). In Figure 6 we present qualitative
results on selected sequences, where the first image of each
row shows the first frame of the sequence. Inlier and outlier
keypoints are shown in white and red, respectively.

2Available at: http://www.gnebehay.com/cmt

There are a range of measures available throughout the
literature for assessing the performance of tracking algo-
rithms quantitatively. Many authors employ the center-error
measure that expresses the distance between the centroid of
the algorithmic output and the centroid of the ground truth.
This measure is only a rough assessment of the localisation
as it completely ignores the scale and the aspect ratio of the
bounding boxes. Furthermore it is not bounded, making the
comparison of results obtained on different sequences diffi-
cult. Instead, we employ the widely used overlap measure

o(bT , bGT ) =
bT ∩ bGT

bT ∪ bGT
, (15)

where bT is the tracker output and bGT refers to the manu-
ally annotated bounding box. This measure has been shown
to penalise translation and scale alterations equally [12] and
therefore is a better indicator for per-frame success. Fur-
thermore it is bounded between 0 and 1. As this mea-
sure is defined on axis-aligned bounding boxes, we align all
non-aligned bounding boxes by fitting the smallest possible
bounding box around them.

In order to convert the per-frame measures into an over-
all score for a sequence, one possibility would be to com-
pute their mean. However, an average overlap of 0.5 does
not reveal whether a method was completely accurate for
half of the sequence or whether it was not very accurate for
the whole sequence. We therefore employ a threshold τ on
Eq. 15, thus converting frames into true positives (TP ) and
false negatives (FN ). The threshold τ steers the require-
ment on per-frame accuracy. We employ 0.25, 0.5 and 0.75
as values for τ , which we interpret as low, medium and high
requirements on accuracy, providing a categorisation for po-
tential applications. For even lower values, the localisation
becomes increasingly rough and higher thresholds are not
reasonable as there is some intrinsic ambiguity in the pro-
cess of manual annotation that cannot be eliminated [17].
We compute

recall =
TP

TP + FN
(16)

as the performance measure for a sequence. This measure
(sometimes referred to as percentage of correctly tracked
frames) indicates how many frames the tracker output sat-
isfies the requirement on the overlap τ when the object was
visible.

We compare our approach quantitatively to the state-
of-the-art tracking approaches STRUCK (Structured output
Tracking [10]), TLD (Tracking-Learning-Detection[14]),
LM (LearnMatch [11]), FT (Fragments-based Track-
ing [1]), HT (HoughTrack [6]) and SB (Semi-supervised
online Boosting [8]). We obtained the source code for these
trackers from the respective project websites and left all pa-
rameter settings at their default values. The algorithms were
initialised using the first bounding box of the annotation. In



Figure 6: Qualitative results on board, mountain-bike, liquor, person occ, juice, ball, gym and singer.



Recall
Sequence CMT STRUCK TLD FT LM HT SB

ball 0.98/0.57/0.19 0.30/0.15/0.10 0.40/0.28/0.19 0.31/0.19/0.13 0.14/0.12/0.09 0.15/0.11/0.10 0.30/0.28/0.12
board 0.84/0.83/0.23 0.91/0.81/0.29 0.45/0.19/0.02 0.82/0.70/0.19 0.33/0.32/0.06 0.26/0.21/0.04 0.15/0.14/0.11
box 0.94/0.83/0.66 0.99/0.90/0.33 0.39/0.35/0.15 0.07/0.05/0.00 0.63/0.61/0.44 0.14/0.05/0.02 0.37/0.28/0.08
car 0.59/0.45/0.03 0.98/0.21/0.05 0.52/0.14/0.05 0.33/0.10/0.05 0.14/0.10/0.03 0.57/0.17/0.03 0.12/0.09/0.06

car 2 0.90/0.88/0.64 0.81/0.47/0.11 1.00/1.00/0.95 0.04/0.04/0.03 0.46/0.36/0.17 0.59/0.47/0.00 0.72/0.72/0.70
carchase 0.30/0.20/0.07 0.08/0.03/0.02 0.16/0.15/0.06 0.04/0.03/0.02 0.00/0.00/0.00 0.04/0.04/0.00 0.08/0.08/0.05

cup on table 0.83/0.81/0.61 1.00/0.92/0.35 0.89/0.64/0.06 1.00/0.88/0.40 0.68/0.54/0.31 1.00/1.00/0.48 0.47/0.47/0.34
dog1 1.00/0.95/0.72 0.86/0.67/0.22 0.90/0.80/0.23 0.84/0.63/0.15 0.77/0.74/0.12 0.83/0.59/0.23 0.51/0.50/0.30
gym 0.93/0.86/0.22 1.00/0.93/0.30 0.76/0.32/0.08 0.24/0.22/0.12 0.10/0.05/0.02 0.30/0.00/0.00 0.61/0.58/0.22
juice 1.00/1.00/0.97 1.00/0.48/0.41 1.00/0.44/0.35 0.09/0.08/0.07 1.00/1.00/0.97 1.00/0.44/0.00 0.43/0.43/0.41

jumping 0.90/0.81/0.32 1.00/0.80/0.17 0.88/0.88/0.65 0.39/0.24/0.11 0.14/0.10/0.05 0.99/0.33/0.16 0.07/0.07/0.07
lemming 0.65/0.62/0.29 0.72/0.66/0.23 0.15/0.07/0.03 0.16/0.14/0.07 0.02/0.01/0.01 0.29/0.23/0.10 0.17/0.16/0.07

liquor 0.91/0.89/0.85 0.74/0.66/0.49 0.70/0.68/0.23 0.46/0.44/0.38 0.86/0.84/0.70 0.07/0.00/0.00 0.43/0.43/0.43
mountain-bike 0.99/0.98/0.48 0.99/0.93/0.23 0.37/0.36/0.16 0.65/0.63/0.18 0.11/0.08/0.04 0.99/0.40/0.03 0.20/0.17/0.08

person 0.95/0.82/0.49 1.00/0.95/0.50 0.92/0.71/0.25 1.00/0.95/0.54 0.75/0.67/0.31 0.49/0.00/0.00 0.52/0.52/0.40
person crossing 0.76/0.70/0.58 0.51/0.42/0.12 0.86/0.70/0.10 0.88/0.66/0.15 0.80/0.75/0.42 0.18/0.10/0.04 0.96/0.91/0.16

person occ 1.00/0.94/0.82 1.00/0.91/0.80 1.00/0.87/0.58 1.00/0.91/0.80 1.00/0.95/0.82 1.00/0.93/0.44 0.99/0.91/0.80
singer 1.00/0.99/0.52 0.48/0.28/0.14 0.77/0.70/0.28 0.52/0.28/0.11 0.21/0.21/0.20 0.24/0.09/0.00 0.15/0.15/0.13

sylvester 0.99/0.96/0.55 0.99/0.96/0.38 0.97/0.94/0.31 0.86/0.73/0.33 0.62/0.49/0.18 1.00/0.95/0.64 0.41/0.40/0.29
track running 1.00/1.00/0.84 1.00/0.25/0.11 0.01/0.01/0.01 0.94/0.25/0.08 0.01/0.01/0.01 0.20/0.00/0.00 0.31/0.24/0.08

avg 0.87/0.81/0.50 0.82/0.62/0.27 0.65/0.51/0.24 0.53/0.41/0.20 0.44/0.40/0.25 0.52/0.31/0.12 0.40/0.38/0.25

Table 1: Obtained recall on 20 sequences for low/medium/high requirements on accuracy.

Table 1 we present the obtained recall for low, medium and
high requirements on accuracy and additionally provide av-
eraged values. Maximal values are highlighted. Our algo-
rithm achieves highest recall in 9 (low acc.), 11 (medium
acc.) and 12 (high acc.) out of 20 sequences and attains
highest average recall in all categories For high accuracy,
it is ahead of the second-ranking algorithm by a margin of
0.23 average recall points.

Different applications have different requirements with
respect to performance metrics computed over the whole
sequence. For instance, an application might be interested
in a tracking algorithm that achieves a recall of 0.7 in at
least 50% of all sequences. We employ success plots sim-
ilar to [28] in order to provide this information for all pos-
sible requirements on the performance. A success plot is a
two-dimensional plot where the x axis denotes the value of
the performance measure at which the output on a sequence
is considered a success, ranging from the theoretical min-
imum of the performance measure to its maximum. The
y axis denotes the percentage of sequences where the per-
formance of the tracker satisfies this requirement (success
rate). Similar to precision-recall curves, an optimal tracker
reaches the top right corner of the plot. In Figure 7 and Fig-
ure 8, success plots are given for medium and high accu-
racy. For these plots we employed 60 sequences, including
the ones used for the tabular comparison. For medium accu-
racy, our tracker compares favourably to the other trackers,
ranking second after STRUCK. When high accuracy is de-
sired, our tracker clearly outperforms its competitors, most
notably when the required recall is between 0.35 and 0.6.
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Figure 7: Success plot for medium accuracy (τ = 0.5).

The experimental evaluation demonstrates that our pro-
posed method is able to achieve state-of-the-art results and
that it is especially well suited when high accuracy is de-
sired. The extensive evaluation also reveals that trackers
relying on strong assumptions about the object structure
(such as LM) suffer a dramatic loss in performance when
applied to arbitrary objects. This success of our method
largely stems from the fact that we pose only slight assump-
tions about the geometric constellation of the keypoints. We
have shown that keypoints are a powerful building block for
tracking when embedded into an appropriate framework.
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Figure 8: Success plot for high accuracy (τ = 0.75).

5. Conclusion

In this work, we have presented a novel keypoint-based
method for long-term model-free object tracking. We have
shown in an extensive evaluation that our approach achieves
state-of-the-art results on a large number of sequences.
Compared to other approaches, our algorithm excels when
high accuracy is desired. In future work we will address
the question if updating the object model during processing
can further improve the robustness of our tracker as well as
how much our algorithm is affected by employing different
methods for keypoint detection and description. Further-
more it might be interesting applying our method for outlier
detection to other areas in computer vision, such as object
category recognition.

Acknowledgements

The research leading to these results has received fund-
ing from the European Union Seventh Framework Pro-
gramme under grant agreement no 257906.

References

[1] A. Adam, E. Rivlin, and I. Shimshoni. Robust fragments-
based tracking using the integral histogram. In CVPR, 2006.

[2] B. Babenko, M.-H. Yang, and S. Belongie. Robust object
tracking with online multiple instance learning. TPAMI,
33(8), 2011.

[3] D. H. Ballard. Generalizing the hough transform to detect
arbitrary shapes. IJPRAI, 13(2), 1981.

[4] S. Duffner and C. Garcia. PixelTrack: a fast adaptive algo-
rithm for tracking non-rigid objects . In ICCV, 2013.

[5] J. Gall, A. Yao, N. Razavi, L. Van Gool, and V. Lempit-
sky. Hough forests for object detection, tracking, and action
recognition. TPAMI, 33(11), 2011.

[6] M. Godec, P. M. Roth, and H. Bischof. Hough-based track-
ing of non-rigid objects. In ICCV, 2011.

[7] H. Grabner and H. Bischof. On-line boosting and vision. In
CVPR, 2006.

[8] H. Grabner, C. Leistner, and H. Bischof. Semi-supervised
On-Line boosting for robust tracking. In ECCV, 2008.

[9] M. Grabner, H. Grabner, and H. Bischof. Learning features
for tracking. In CVPR, 2007.

[10] S. Hare, A. Saffari, and P. H. S. Torr. Struck: Structured
output tracking with kernels. In ICCV, 2011.

[11] S. Hare, A. Saffari, and P. H. S. Torr. Efficient online struc-
tured output learning for keypoint-based object tracking. In
CVPR, 2012.

[12] B. Hemery, H. Laurent, and C. Rosenberger. Compara-
tive study of metrics for evaluation of object localisation by
bounding boxes. In ICIG, 2007.

[13] G. Hua and Y. Wu. Measurement integration under inconsis-
tency for robust tracking. In CVPR, 2006.

[14] Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-Learning-
detection. TPAMI, 34(7), 2012.

[15] B. Leibe, A. Leonardis, and B. Schiele. Robust object detec-
tion with interleaved categorization and segmentation. IJCV,
77(1-3), 2008.

[16] S. Leutenegger, M. Chli, and R. Y. Siegwart. BRISK: Binary
robust invariant scalable keypoints. In ICCV, 2011.

[17] T. List, J. Bins, J. Vazquez, and R. B. Fisher. Performance
evaluating the evaluator. In PETS, 2005.

[18] D. G. Lowe. Distinctive image features from Scale-Invariant
keypoints. IJCV, 60(2), 2004.

[19] B. D. Lucas and T. Kanade. An iterative image registra-
tion technique with an application to stereo vision. In IJCAI,
1981.

[20] E. Maggio and A. Cavallaro. Video Tracking: Theory and
Practice. 2011.

[21] M. E. Maresca and A. Petrosino. MATRIOSKA: A multi-
level approach to fast tracking by learning. In ICIAP, 2013.

[22] M. Özuysal, M. Calonder, V. Lepetit, and P. Fua. Fast key-
point recognition using random ferns. TPAMI, 32(3), 2010.

[23] M. Özuysal, V. Lepetit, F. Fleuret, and P. Fua. Feature har-
vesting for Tracking-by-Detection. In ECCV. 2006.

[24] E. Rosten, R. Porter, and T. Drummond. Faster and better:
A machine learning approach to corner detection. TPAMI,
32(1), 2010.

[25] A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof.
On-line random forests. In ICCV Workshops, 2009.

[26] J. Santner, C. Leistner, A. Saffari, T. Pock, and H. Bischof.
PROST: Parallel robust online simple tracking. In CVPR,
2010.

[27] S. M. Shahed Nejhum, J. Ho, and M.-H. Yang. Visual track-
ing with histograms and articulating blocks. In CVPR, 2008.

[28] Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A
benchmark. In CVPR, 2013.

[29] R. Xu and D. Wunsch. Survey of clustering algorithms. TNN,
16(3), 2005.

[30] L. Zhang and L. van der Maaten. Structure preserving object
tracking. In CVPR, 2013.


